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ABSTRACT
This study shows how the use of increasing model complexity allows us to hypothesize about
dominant streamflow mechanisms in two small Brazilian forested basins. Nine different structures
from SUPERFLEX, an objective framework to systematically increase hydrological model complex-
ity, were tested and we extended the flexible modelling methodology to error models as well. We
show that applying a rigorous methodology in a model evaluation framework, with residual
analysis and control of model complexity, is essential for testing a model as a hypothesis for
dominant hydrological controls. Our results indicate that the model architecture was more
important than the increase in the number of model parameters. Better performing models
were those with a parallel structure, which confirms our a priori belief about the dominant runoff
mechanisms of the studied catchments, characterized by a rapid response to rainfall, but also
a constant river discharge fed by water storage on the thick soil layer.
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Introduction

The connectivity between basin compartments and
their dependencies on storage thresholds, soil proper-
ties and topography significantly influence the hydro-
logical behaviour at the basin scale (McGuire and
McDonnell 2010). Our insufficient knowledge of
those essential aspects of the system (e.g. internal orga-
nization and the ecosystem’s ability to manipulate the
system in response to temporal dynamics) corresponds
to a significant part of the uncertainty in hydrological
models (Savenije and Hrachowitz 2017). Therefore,
those interactions should be considered in the concep-
tualization of hydrological models and its structures
(Fenicia et al. 2011).

Conceptual hydrological models usually have a fixed
structure which may be an important source of uncer-
tainty (Butts et al. 2004, Poncelet et al. 2017). Different
basins with distinct hydrological dynamics are better
represented by different structures of conceptual mod-
els, which indicates a connection between basin-scale
properties and the appropriate use of model structures
(Van Esse et al. 2013, Fenicia et al. 2014). In order to
deal with the limitation of fixed model structures, the
use of flexible model structures has been recom-
mended. For example, Clark et al. (2008) proposed

the Framework for Understanding Structural Errors
(FUSE), which combines four existing hydrological
models into several model structures, and suggested
that the choice of structure is as important as that of
model parameters. Fenicia et al. (2011) and Kavetski
and Fenicia (2011) proposed a flexible modelling struc-
ture called SUPERFLEX, which is based on generic
blocks, such as reservoirs, joints and propagation func-
tions, that can be assembled in different ways.

Increasing complexity in the model structure (Van
Esse et al. 2013, Fenicia et al. 2014, Orth et al. 2015,
Boer-Euser et al. 2017) or in the spatial scale (Van Der
Linden and Woo 2003, Li et al. 2015) does not guar-
antee improved simulations. It is not the number of
parameters that determines the capacity of the model
to reproduce the responses of a basin, but rather the
role of those parameters, the processes they represent,
and their impacts on the basin response (Fenicia et al.
2008). A higher number of parameters can lead to
over-fitting (Orth et al. 2015), since the additional
parameters may be fitted to noise of the observed
data and thus lead to poor predictive performance
(Schöniger et al. 2014, Lever et al. 2016). Overfitted
models might perform better in the calibration dataset,
but they are likely to perform poorly in the validation
(Perrin et al. 2001, Lever et al. 2016). Model complexity
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control reduces parameter equifinality and helps to
identify robust models, allowing hydrological general-
ization and classification (Schoups et al. 2008). Also, it
avoids over-fitting and low parameter sensitivity
(Schöniger et al. 2014). As a result, the best model
will be the one with a better balance between goodness
of fit and complexity.

Violations of the assumptions about model residuals
are known to lead to biased parameter estimates
(Schoups and Vrugt 2010), and thus have a high poten-
tial to misguide model selection. For that reason, it is
important that these assumptions are verified
a posteriori (e.g. Thyer et al. 2009, Schoups and Vrugt
2010, Smith et al. 2010, 2015, Kavetski et al. 2011).
Despite those previous findings, the adoption of
a formal model residual treatment is still incipient in
the hydrological modelling literature.

In this study we used a flexible hydrological model-
ling strategy to identify model structures with a better
correspondence with catchment behaviour and hence
hypothesize about dominant runoff generation
mechanisms. In order to prevent biased results in the
choice of both model parameters and model structures,
we extended the flexible modelling methodology to
error models as well and combined it with uncertainty
analysis and control of model complexity. As a case
study, the proposed methodology was applied to the
rainfall-runoff modelling of two forested basins located
in the southern region of Brazil. We show that, even
for a relatively small dataset, the adoption of this rig-
orous methodology is useful for model identification.

Materials and methods

Study site

Two small experimental catchments were used in this
work: the Bugres River basin (11.45 km2) and the Saci
River basin (0.102 km2) (Fig. 1). The study of experi-
mental catchments is important because the observed
behaviour can be linked to specific catchment charac-
teristics. The catchments are located in the northern
region of the state of Santa Catarina (Southern Brazil).
Both have precipitation and streamflow data with high
temporal resolution (10 min). Due to the costs of
maintenance and limited funding cycle, only relatively
short periods of data were available. The precipitation
and streamflow data at the Bugres River basin were
collected by Grison et al. (2014) from 11 May 2011 to
1 July 2014. The rating curve has an upper level limit,
which corresponds to the bankfull of the monitoring
section. Discharge values related to water levels larger
than this bankfull level have low reliability and their

use increases the uncertainty of the data. Therefore,
points with levels above these limits were excluded,
resulting in two periods of continuous records (without
excluded data): from 4 April to 9 July 2012 and from
20 September 2012 to 6 February 2013. The basin
elevation varies from 820 to 981 m a.s.l. and the eleva-
tion of the meteorological station is 790 m a.s.l. (Grison
et al. 2014). We used streamflow data from the Saci
River basin from 3 October to 17 November 2008
(Chaffe et al. 2010). The mean elevation of this basin
is 960 m a.s.l. (Santos 2009). Precipitation was mea-
sured at a meteorological station located 1 km away
from the basin outlet, with an elevation of 869 m a.s.l.
(Chaffe et al. 2010). The elevation variation is not large;
therefore we considered that the precipitation is con-
stant over the basins.

Daily potential evapotranspiration was calculated
using the modified Penman method (Doorenbos and
Pruitt 1977), which requires daily data of temperature,
incident radiation, relative humidity, and average wind
speed at 2 m above the ground surface. The meteor-
ological data were obtained at the Feio weather station,
which is located 1 km south of the Saci River basin.
Daily potential evapotranspiration data were trans-
formed to 10 min – the temporal resolution of the
model input data – considering that evapotranspiration
behaves as a sinusoidal function from 06:00 to 18:00 h,
corresponding to 90% of the total potential evapotran-
spiration of the day, and has constant values during the
rest of the day. This type of transformation of daily
potential evaporation data into sub-daily data using
a sinusoid function was also employed in other works
(e.g. Fenicia et al. 2006, Vaché and McDonnell 2006).

Hydrological model framework

The SUPERFLEX framework (Fenicia et al. 2011,
Kavetski and Fenicia 2011) consists of reservoirs and
connections that conceptualize the storage and release
of water. They can represent elements such as inter-
ception, surface flow, soil moisture and groundwater,
among others, presenting a linear or nonlinear outflow.
The models can also be classified according to the
different connectivity hypotheses of the flow paths
(i.e. serial or parallel structures), which is quite similar
to the Tank Model proposed by Sugawara (1961,
1995)).

The SUPERFLEX framework has been tested and
found to be suitable for several catchments with areas
ranging from 0.04 to 10 009 km2 (Kavetski and Fenicia
2011, Van Esse et al. 2013, Fenicia et al. 2014, Gao et al.
2014). Fenicia et al. (2014) found with the SUPERFLEX
framework that experimental basins with a “vertical”
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behaviour (water flow) are best represented by models
with parallel connections. Those connections in parallel
consider the distribution of precipitation in fast and
slow reservoirs. However, “horizontal” basins were best
represented by models with serial connections. Van
Esse et al. (2013) used the SUPERFLEX in 237 French
basins and found that the inclusion of a slow reservoir
representing the subsurface flow improves the model
performance in basins with dominant groundwater,
since it allows for the independence of the fast and
slow flows.

We used nine different structures of the
SUPERFLEX framework proposed by Fenicia et al.
(2011) and Kavetski and Fenicia (2011) (Fig. 2): eight
were the same as in Fenicia et al. (2014) – M03, M04,
M06, M07, M08, M09, M11 and M12 – and one was
a new combination of the model structures, which we
called M13. Models M03, M04 and M06 have a serial
structure. Model M03 has two reservoirs; the

precipitation enters the unsaturated zone reservoir
and the storage that exceeds a specified threshold over-
flows and enters the fast reservoir. Model M04 differs
from M03 because the outflow of the unsaturated zone
reservoir occurs according to an exponential function,
rather than a threshold. The only difference between
M04 and M06 is that M06 contains an interception
reservoir.

Models M07, M08, M09, M11, M12 and M13 have
a parallel structure. Model M07 has a riparian zone
reservoir, which receives a constant fraction of the total
precipitation. In M08 the precipitation is divided into
fast and slow linear reservoirs. Model M09 differs from
M08 by the inclusion of an unsaturated zone reservoir
whose outflow is divided into fast and the slow reser-
voirs, which are both linear. Model M11 differs from
M09 by including a nonlinear function at the outflow
of the unsaturated zone reservoir. Model M12 differs
from M11 by the addition of an interception reservoir.

Figure 1. Location of the Saci and Bugres river basins.
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Finally, model M13 is M09 with a riparian zone reser-
voir. Table 1 summarizes which processes (reservoirs)
are considered in each structure.

The construction of the models in a controlled way
allows us to attribute differences in performance to dif-
ferences in model structure. One can test the influence of
serial versus parallel connections, the importance of the
interception reservoir and the linearity of the processes,
for example. The models were implemented in MATLAB
with a second-order accurate explicit method with adap-
tive time stepping (Schoups et al., 2010), absolute and
relative tolerances fixed at 10−3, utilizing the water bal-
ance equations and the constitutive relationships pre-
sented in Appendix A of Fenicia et al. (2014).

Calibration and uncertainty analysis

Model calibration and uncertainty analysis were per-
formed using the automatic calibration algorithm

Differential Evolution Adaptive Metropolis (DREAM(ZS))
proposed by Laloy and Vrugt (2012) and Vrugt (2016).
DREAM uses Bayesian inference for the joint estimation
of model parameter values and their uncertainty. We set
up the DREAM(ZS) parameters so that the number of
Markov chains was N = 3 and the number of generations
T = 15 000. In some cases, T was increased to guarantee
the convergence to a stationary distribution.

One issue of Bayesian statistics is that the construction
of the likelihood function requires some assumptions
about model residuals to be made a priori, and often
these assumptions are not met or verified a posteriori.
The violation of those premises leads to unreliable para-
meter and uncertainty estimates (Thyer et al. 2009,
Schoups and Vrugt 2010, Smith et al. 2010, 2015,
Kavetski et al. 2011, Oliveira et al. 2018). In this work,
the generalized likelihood function (GL) proposed by
Schoups and Vrugt (2010) was used for the inference of
the hydrological model parameters. The GL relaxes the
commonly assumed premises on residual errors, allow-
ing different hypotheses about the residual model to be
considered (Schoups and Vrugt 2010).

The natural logarithm of the likelihood function is
used for algebraic simplicity and for having greater
numerical stability:

, ¼ n log
2σ�ωβ

� þ ��1
�
Xn

t¼1

log σt � cβ
Xn

t¼1

ja�;tj
2

1þβ (1)

Models in series 

Models in parallel 

Figure 2. Model structures from SUPERFLEX framework considered in this study. The parameters are in red (adapted from
Fenicia et al. 2014).

Table 1. Physical processes included in each model structure.
M03 M04 M06 M07 M08 M09 M11 M12 M13

Unsaturated
reservoir

× × × × × × × ×

Fast reservoir × × × × × × × × ×
Slow reservoir × × × × ×
Interception
reservoir

× ×

Riparian zone
reservoir

×
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where n is the number of discharge observations used
for parameter inference; a�;t; ωβ; cβ and σ� derive
from the values of skewness ξ and kurtosis β (equations
are presented in Appendix A of Schoups and Vrugt
2010).

In order to evaluate the considered assumptions,
different error models with increasing complexity
were tested in a systematic way with the inclusion of
different parameters in the inference, as done in pre-
vious studies (e.g. Schoups and Vrugt 2010, Smith et al.
2015, Oliveira et al. 2018). The first model used (L1)
has been widely used and it is the simplest one. It
considers that the residuals follow a Gaussian distribu-
tion, with zero mean and constant variance, and are
independent. The second error model (L2) considers
that the errors are heteroscedastic. The heteroscedasti-
city of the residuals was considered assuming that the
error standard deviation increases linearly with the
simulated flow (e.g. Schoups and Vrugt 2010, Evin
et al. 2014, Westra et al. 2014, Oliveira et al. 2018):

σt ¼ σ0 þ σ1ŷt (2)

where σt is the standard deviation at time t; σ0 is the
heteroscedasticity intercept, σ1 is the heteroscedasticity
slope, and ŷt is the simulated flow. The third model
(L3) considers a skewed exponential power (SEP) dis-
tribution of errors. In this case, we allowed the kurtosis
parameter (β) to vary, while the skewness parameter
remained fixed (we only considered symmetric distri-
butions). A summary of the error models derived from
GL is presented in Table 2. Further details on the

implementation of GL can be found in Schoups and
Vrugt (2010). The error model parameters were
inferred jointly with the hydrological model para-
meters. We used a uniform prior pdf for each para-
meter with ranges specified in Table 3.

The residuals were highly correlated when the ori-
ginal dataset – with discharge measurements at 10-min
intervals – was used for model calibration. We tested
three different approaches to handle autocorrelation:
(a) consideration of an AR(1) model applied to the raw
residuals, as in the original GL formulation; (b) con-
sideration of an AR(1) model applied to standardized
residuals, as suggested by Evin et al. (2013); and (c)
a reparameterization of (b), as presented by Evin et al.
(2014). In all three approaches, with temporal resolu-
tion of 10 min, the value of ϕ, the parameter of the AR
(1) model, converged to 1, which results in large ran-
dom errors (Schoups and Vrugt 2010). We also com-
bined the three approaches with different thinning. The
results were worse for an interval smaller than 6 h, and
better for intervals of 12 and 24 h. However, approach
(a) may result in a poor predictive uncertainty, as
suggested by Evin et al. (2013), and approach (b)
resulted in a high correlation between σ1 and ϕ, as
also demonstrated by Evin et al. (2013). Therefore,
since the use of an AR(1) model alone was not enough
to handle residual autocorrelation and to avoid the
problems encountered when the AR(1) model was
employed, we decided to consider only a thinning of
the data series, as done in other hydrological studies
(e.g. Westra et al. 2014). Other options would be pos-
sible, such as to fix the parameter of the AR(1) model
to a pre-specified value (Schoups and Vrugt 2010) or to
separately infer the hydrological and error model para-
meters (Evin et al. 2014).

The models were recalibrated using a dataset com-
posed of one every kth discharge value. Values of
k equal to 6, 36 and 72 were tested (i.e. observation
intervals of 1, 6 and 12 h). Error autocorrelation was

Table 2. Assumptions of each residual model considered in this
study.
Model Correlation Heteroscedasticity Distribution Implementation

L1 Independent Homoscedastic Gaussian σ1 = 0; β = 0;
� = 1

L2 Independent Heteroscedastic Gaussian β = 0; � = 1
L3 Independent Heteroscedastic SEP � = 1

Table 3. Hydrological and error model parameters specifications.
Parameter Description Min Max Unit

Hydrological model Ce Evaporation parameter 0.01 2 -
Su,max Unsaturated reservoir storage capacity 0.1 700 mm
Imax Interception reservoir storage capacity 0.1 500 mm
γ Unsaturated reservoir exponent 0.001 20 -
Me Inflow partitioning coefficient 0.01 0.99 -
Ms Outflow partitioning coefficient 0.01 0.99 -
α Fast reservoir exponent 1.0 20 -
Kr Riparian zone reservoir coefficient 0.01 10 h−1

Kf Fast reservoir coefficient 0.001 1 mm1−α h−1

Ks Slow reservoir coefficient 0 1 h−1

Error model σ0 Heteroscedasticity intercept 0 1 mm h−1

σ1 Heteroscedasticity slope 0 1 -
β Kurtosis parameter −1 1 -
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significantly reduced in all the models when utilizing
a thinning of 72. For the Saci River basin we obtained
similar results (not shown), therefore a thinning of 72
was adopted.

The last 7500 sets of parameters sampled with the
DREAM(ZS) algorithm were used to represent the
uncertainty associated with the parameter values and
to create the probabilistic streamflow simulations. The
performance of each model was evaluated using three
different metrics: the reliability, the precision and the
volumetric bias metrics. The reliability of the probabil-
istic distribution was evaluated with the reliability
metric (Evin et al. 2014, McInerney et al. 2017):

Reliability ŷ; y½ � ¼ 2
n

Xn

t¼1

FU FŷðtÞðytÞ
� �� FΩ FŷðtÞðytÞ

� ��� ��

(3)

where FŷðtÞ is the cumulative distribution function (cdf)
of the predictive distribution, y is the observations, ŷ is
the simulations, FU is the cdf of the uniform distribu-
tion, and FΩ is the empirical cdf. The precision metric
is related with the width of the probabilistic predictions
(McInerney et al. 2017):

Precision ŷ; y½ � ¼
1
n

Pn

t¼1
sdevŷt

1
n

Pn

t¼1
yt

(4)

where sdevŷt is the standard deviation of the probabil-
istic predictions at time step t. The volumetric bias
metric evaluates the model’s capacity in simulating
the water balance (McInerney et al. 2017):

VolBias ŷ; y½ � ¼
Pn

t¼1
yt �

Pn

t¼1
ŷt;mean

Pn

t¼1
yt

��������

��������
(5)

where ŷt;mean is the average of the simulations at time
step t. For all the metrics considered, the value of zero
indicates the perfect performance.

Control of model complexity

One way to control model complexity is by separat-
ing the available data in a period for calibration and
a period for validation. The comparison between the
models can be performed by evaluating their perfor-
mance in the validation period. For the Bugres River
basin, the dataset was divided into two parts – from
4 April to 9 July 2012 for calibration and from
20 September 2012 to 6 February 2013 for validation.

However, for the Saci River basin, the series was not
long enough to be separated into two parts. Hence,
information criteria were used to control the com-
plexity and select the best model. For the Bugres
River basin performance in both validation and infor-
mation criteria was used to select the best model in
order to verify whether the two approaches lead to
similar conclusions. As information criteria, we used
the Akaike information criterion (AIC) (Akaike 1974)
and the Bayesian information criterion (BIC)
(Schwarz 1978). These information criteria evaluate
which hypothesis (i.e. which model) is better sup-
ported by the data:

Ik ¼ �2 ln Lþ C (6)

where Ik is the information criterion value, L is the
maximum likelihood of each hypothesis, and C is
a positive scalar that penalizes the complexity. Here
note that C = 2d for the AIC and C = dln(n) for the
BIC, where d is the number of parameters and n the
number of observations. The best model among all is
the one with the lowest value of Ik. The relative support
of a model in relation to the best model (the one that
has the lowest information criterion value) is calculated
by the difference between the AIC value for the model
considered, AICi, and the information criterion value
for the model with the lowest value of AIC, AICmin:

ΔAi ¼ AICi � AICmin (7)

With this value, weights can be assigned to each of the
nm models considered,

wi ¼
expð� 1

2ΔAiÞ
Pnm
j¼1

expð� 1
2ΔAjÞ

(8)

where wi is the weight for model i. The weights for the
BIC are calculated in the same way. The values indi-
cate the probability of model i being chosen in
a different period from that used in the calibration.

Results

Parameter and predictive uncertainty

In order to prevent biased results in the choice of both
model parameters and model structures, the compar-
ison between the hydrological models was preceded by
an analysis of the use of different error models for
parameter inference. To evaluate the impact of the
error model in the parameter and predictive uncer-
tainty, we compared the posterior parameter distribu-
tions and the value of the three performance metrics
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(reliability, precision and volumetric bias) among
them.

Bugres River basin
For the Bugres River basin, considering the perfor-
mance of the three different error models evaluated
in the calibration period, L1 clearly presented poor
results for precision and reliability when compared
with the error models L2 and L3, and, in general,
there was a slight improvement in these metrics with
L3 in comparison with L2 (Fig. 3). These results are in
agreement with the conclusions presented in Kavetski
et al. (2011), Schoups and Vrugt (2010) and Thyer
et al. (2009) that the use of a more adequate error
model improves the characterization of the predictive
uncertainty. However, the volumetric bias metric was
overall lower (i.e. better) for L1 and L2. The analysis of
the different hydrological model structures throughout
the Results and Discussion sections was made with the
results of the error model L3.

With respect to the different hydrological model
structures, in general models with a parallel structure
outperformed those in series considering all the
metrics. Between the models with a parallel structure
(M07–M13), the performance metrics values were very
similar, and models M08 and M13 presented better
results for reliability. Figure 4 presents the predictive
uncertainty for models M04 (in series) and M07 (in
parallel) obtained with the different error models.

The consideration of a threshold function for the
outflow of the unsaturated zone reservoir led to poorer
performance (M03 versus M04). Comparing M04 and
M06, the inclusion of an interception reservoir

improved the volumetric bias and reliability metrics.
Among models M11 and M12 the inclusion of this
reservoir improved the precision and volumetric bias
metrics but led to poor performance considering the
reliability metric. Model M07 outperformed M04 in all
metrics; the addition of a riparian zone reservoir
improved the representation of the discharge behaviour
in this basin. The inclusion of a nonlinear outflow in
the unsaturated zone reservoir (M11 versus M09)
improved the performance as well.

The parameters inferred for the Bugres River basin
resulted in different posterior distributions with each
error model and with each hydrological model. An
example of the posterior parameter distributions
obtained with the three error models is presented in
Figure 5 for the model M07. The Ce parameter, which
is an adjustment factor for the evapotranspiration, con-
verged to its upper limit, equal to 2. The parameter α
had values greater than 1.5 in most models, implying
a nonlinearity of the surface runoff generation. The
parameter γ in most of the models was smaller than
1, indicating also a nonlinearity of the slow reservoir.
These results justify the slightly worst performance of
linear models, such as M09, in which these two para-
meters were set as 1.

Saci River basin
For the Saci River basin, the precision and reliability
metrics presented better results for most of the models
when the L3 model was considered. The value of the
reliability metric was up to 50% lower (better) with L3
when compared to L1. The value of the precision
metric improved by up to 40%. Nevertheless, as for

Figure 3. Performance metrics for the Bugres River basin, using error models L1, L2 and L3. Calibration performed with runoff data
with thinning of 72.
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the Bugres River basin, the volumetric bias metric
presented better (smaller) results with L1 and L2. The
comparison between the hydrological model structures
throughout the Results and Discussion sections was
done using the results obtained with L3.

Performance metrics for the calibration period in
the Saci River basin also showed a significant difference
between structures in series and in parallel, as was the
case of the Bugres River basin (Fig. 6). Moreover,
models with a serial structure (M03, M04 and M06)
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Figure 4. Observed runoff series (blue), 95% uncertainty (light grey) and uncertainty associated with the values of the parameters
(dark grey) for the Bugres River basin for models M04 (left) and M07 (right), using error models L1 (top), L2 (middle) and L3
(bottom). Calibration performed with thinning of 72.

Figure 5. Distribution of the parameters inferred with each of the three error models – L1, L2 and L3 – for model M07 in the Bugres
River basin. The central mark indicates the medians, the box indicates the 50% quantiles and the whiskers extend to the 95%
quantiles.
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underestimated the peak flows considerably when com-
pared with those with structure in parallel. To illustrate
this result, Figure 7 presents the predictive uncertainty
for models M03 (in series) and M11 (in parallel)
obtained with the different error models.

Models M09, M11, M12 and M13 presented similar
results for all three metrics. In the calibration the best
models were those with an unsaturated zone reservoir
with its outflow split between two reservoirs. The
inclusion of a slow and a fast reservoir independent
from each other led to better prediction of catchment
outflow.

Some components from the structures did not
improve the predictive uncertainty. There was some
improvement in the results of M04 in relation to
M03. The difference between these models is the out-
flow of the unsaturated reservoir: in M04 it is an
exponential function and in M03 a threshold function.
The inclusion of an interception reservoir (M06 versus
M04) did not improve the results significantly, result-
ing in lower (better) volumetric bias and reliability
values and a poorer performance in precision. M11
and M12 performed very similarly, with M12 present-
ing lower (better) values of reliability and precision
metrics and larger (worst) volumetric bias. The addi-
tion of a riparian zone reservoir (M04 versus M07)
increased the performance for the volumetric bias and
reliability metrics. The inclusion of a nonlinear outflow
in the unsaturated zone reservoir (M11 versus M09)
improved precision and reliability but increased the
volumetric bias.

As in the Bugres River basin, the parameter poster-
ior distributions varied among both the hydrological

models and the error models. As an example, Figure 8
presents the results for M11, which indicate that errors
in the correct representation of the residuals or the
hydrological model structure can be compensated by
the distribution of the parameter values. Considering
all the models, the values of Ms, which distributes the
flow between the surface (fast reservoir) and subsurface
(slow reservoir) flows, were close to 0.90; i.e. only 10%
of the flow leaving the unsaturated zone reservoir goes
to the slow reservoir. The α parameter, which repre-
sents the nonlinearity of the fast reservoir, was close to
1, which indicates that this reservoir has a linear beha-
viour. The γ parameter values were larger than 4 for
models M11, M12 and M13, showing a significant
nonlinearity of the slow reservoir. The parameter Ce

converged to values close to and smaller than 1, which
means that there was no need to adjust the potential
evapotranspiration.

Analysis of model complexity

To verify which model is better supported by the data,
two complexity control methods were used: (i) separa-
tion of the data series in two parts, one for calibration
and the other for validation; and (ii) two information
criteria – the AIC and the BIC. The data series of the
Saci River basin was not long enough to be split in two
parts. Therefore, only the second method was used. For
the Bugres River basin, both methods were utilized to
verify whether the two approaches led to similar con-
clusions, which would indicate whether the use of
information criteria alone might be enough to identify
the best model. Hence, it would support the model

Figure 6. Performance metrics for the Saci River basin, using error models L1, L2 and L3. Calibration performed with runoff data of
the complete series with data for 10 min and thinning of 72.
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selection results obtained for the Saci River basin
(based on information criteria only).

For both basins, the models in series presented
larger Ik values than the models in parallel (Fig. 9).
The model that presented the largest Ik value (i.e.
worst) was M03, which is one of the simplest
models.

In the validation period, performance of the models
for the Bugres River basin considering the three
metrics (precision, reliability and volumetric bias
metrics) was worse compared to the calibration results
(Fig. 10). As in the calibration period, models with
a parallel structure resulted in a better performance
than models with a serial structure. To illustrate this

Figure 8. Distribution of the parameters inferred with each of the three error models – L1, L2 and L3 – for model M11 in the Saci
River basin. Calibration performed with complete runoff data (10 min) with thinning of 72. The central mark indicates the medians,
the box indicates the 50% quantiles and the whiskers extend to the 95% quantiles.
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Figure 7. Observed runoff series (blue), 95% uncertainty (light grey) and uncertainty associated with the values of the parameters
(dark grey) for the Saci River basin for models M03 (left) and M11 (right), using the error models L1 (top), L2 (middle) and L3
(bottom). Calibration was performed with runoff data for the complete series with thinning equal to 72.
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result, Figure 11 presents the predictive uncertainty for
models M04 and M07 obtained with the different error
models. The models with better results considering the
three performance metrics together were M07 and
M13. Both models are among the most complex mod-
els; therefore, it can be said that this complexity is
justified.

When comparing the maximum log-likelihood
values from validation with the AIC and BIC values,
it can be observed that models with lower information
criteria values presented better performance in valida-
tion (Fig. 12). This result indicates that the use of
information criteria values alone for the Saci River

basin may be reliable, since both methods lead to the
same results.

For the Saci River basin, the models in parallel in
general presented smaller values of Ik (Fig. 9). The
weights for this model were very close to 1 and models
M11 and M12 presented very small weights, indicating
that the probability of choosing other models rather
than M13 in a different dataset from that used in the
calibration is practically zero. Considering the BIC
values, the best model was M11. The BIC criterion
selected a less complex model than AIC, which indi-
cates that the former criterion penalizes the complexity
more than the latter.

Saci Bugres 

Figure 9. Information criteria results for the Saci and Bugres river basins with error model L3. ΔAIC and ΔBIC correspond the relative
support of a model in relation to the best model (the lower the better) for the Akaike information criterion and Bayesian
information criterion, respectively. The weights assigned for each model are presented in the text. Weights smaller than 0.01
were not presented. The models in series are in blue and those in parallel are in grey.

Figure 10. Performance metrics for the Bugres River basin, using error models L1, L2, and L3. Validation performed with thinning of 72.
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With respect to the different error models, L3 pre-
sented smaller (better) information criteria values than
the other two for both basins (results not shown),
which, along with the results of performance metrics

presented before, supports the use of a more complex
error model. Also, the rank of the hydrological models
obtained using information criteria values was influ-
enced by the choice of the error model used for
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Figure 11. Observed runoff series (blue dots), 95% uncertainty (light grey) and uncertainty associated with the values of the
parameters (dark grey) for the Bugres River basin for models M04 (left) and M07 (right), using the error models L1 (top), L2 (middle)
and L3 (bottom). Validation performed using thinning of 72.

Figure 12. Maximum log likelihood values in the validation period for the Bugres River basin against the AIC (left) and BIC (right)
values. The validation of M03 is omitted because it presented a discrepant result that made the visualization difficult.
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parameter inference. This result highlights the impor-
tance of the correct choice of the error assumptions in
order to find the best models.

Residual diagnostics

The verification of the assumptions about the model
residuals was done graphically for each model. All the
hydrological models were calibrated with the three error
models considered in this study (L1, L2 and L3). The
residuals were standardized by dividing them by σt. The
standardized residuals were evaluated in relation to their
adjustment to the assumed distribution, their variance as
a function of the observed runoff value and their tem-
poral autocorrelation. In Figure 13 we show an example
for the Bugres River basin. The premises for the residual
models were not met in any case for the L1 function;
that is, the errors are heteroscedastic, do not follow
a normal distribution and are highly correlated. With
the L2, which considers the heteroscedasticity of the
errors, the error variance was not yet constant according
to the observed runoff values and the residuals were
correlated. However, a better adjustment to the assumed

distribution was obtained. The L3 error model presented
similar results for the variance and autocorrelation, and
the distribution was closer to the one assumed in the
calibration.

Consideration of thinning of the data series
increased the spread of the parameter posterior distri-
bution, without significantly changing the median
parameter values (Fig. 14).

We also investigated the relation between error
parameters and model structures. We plotted the
posterior distributions of the error model parameters
(σ0, σ1 and β) for each hydrological model sorted from
best to worst according to the information criterion
AIC (Fig. 15). It is possible to verify that models with
similar results also have similar error characteristics.
Models with lower values of σ0 and σ1 resulted in
a narrower predictive uncertainty and therefore were
also the ones with smaller (better) values of the pre-
cision metric. The value of the heteroscedasticity
intercept (σ0) presented larger variations between
models in parallel and in series in the Saci River
basin than in the Bugres River basin. Models in par-
allel, which presented better AIC values, resulted in
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Figure 13. Diagnostics of the residuals for the Bugres River basin. Calibration of model M11 performed with L1 (top), L2 (middle)
and L3 (bottom) with temporal resolution of 10 min and thinning of 72. From left to right: (a) histograms of the standardized
residuals, where the black line indicates the theoretical distribution; (b) quantile–quantile plot of standardized residuals and the
theoretical distribution; (c) standardized residuals as a function of simulated streamflow; and (d) the autocorrelation function of the
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smaller values of σ1; therefore, a lower degree of
heteroscedasticity.

For the Saci River basin, the kurtosis parameter (β)
converged to the value of 1, meaning that the errors
follow a Laplace distribution, independently of the
model used. This kind of distribution has heavier
tails, which makes it robust against outliers. For the
Bugres River basin, there is a larger difference between
β values for models in parallel and in series. For models
in series, which resulted in the worst AIC values, β was
closer to −1, representing a uniform distribution.

Discussion

Model structure informing about dominant runoff
generation processes

Consideration of a parallel structure and of the non-
linearity of the unsaturated zone better simulated the

catchment outflow of the Bugres River basin. The
results from this study site are in agreement with the
knowledge of its hydrological functioning (Grison et al.
2014), characterized by a rapid response to rainfall
(represented by the fast reservoir) and also a constant
river discharge fed by water storage in the thick soil
layer.

The models with a parallel structure also had sig-
nificantly better performance than those in series for
the Saci River basin. In addition to the parallel struc-
ture, the presence of an unsaturated soil reservoir was
also of major importance. This result indicates that, for
this catchment, the soil exerts an important role in the
release and storage of water. This basin has
a hydrologically active layer (with weathered material)
of more than 5 m depth in most of its area, ranging
from 6 m to less than 1 m near the river spring (Santos
2009). Santos (2009) verified that the soil in the basin

Figure 14. Posterior distribution of the parameters of model M11 for the Bugres River basin, using the error model L3. Calibration
performed with thinning of 1 (red) and 72 (green). The central mark indicates the medians, the box indicates the 50% quantiles and
the whiskers extend to the 95% quantiles.

Figure 15. Posterior distribution of the parameters of the error model L3 –heteroscedasticity intercept σ0, heteroscedasticity slope
σ1, and kurtosis β – for the Saci and Bugres river basins. The hydrological models are ordered from best to worst according to the
information criteria AIC. The central mark indicates the medians, the box indicates the 50% quantiles, and the whiskers extend to
the 95% quantiles.
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has a high infiltration capacity and that even with high
precipitation intensities this capacity was not exceeded.
Those characteristics justify the importance of the
unsaturated soil reservoir and the division of the flow
between fast and slow reservoirs in this catchment.

Even though the two basins are forested, the inclu-
sion of an interception reservoir did not improve
model performance. That insensitivity to explicitly
modelling interception may be due to the fact that
the models are lumped and consider that the whole
basin behaves in the same way, without considering the
spatial distribution of rain and vegetation. Moreover,
for the Bugres River basin the Ce parameter – an
adjustment for the evapotranspiration – converged to
2 for all models, regardless of the consideration of the
interception process. This result might be an attempt to
compensate for other losses not explicitly accounted
for by the model. In the case of the Saci River basin, the
Ce parameter was close to 1 for all models.

Is the increase in model complexity justified?

The information criteria considered in this study tend
to favour an increase in model complexity in both
basins but did not lead to the selection of the most
complex model (in terms of the number of para-
meters). Westra et al. (2014) also found similar results
when using the AIC for model selection. The variation
in the term related to the maximum likelihood func-
tion value was much greater than the variation in the
term that penalizes complexity. Therefore, the model
that produced a higher maximum likelihood function
value also resulted in better information criteria values.
For the Bugres River basin, the best models evaluated
with AIC and BIC in the calibration period also per-
formed better in the validation period, i.e. lower AIC
and BIC values in calibration were associated with
higher maximum log likelihood values in validation.
Similar results were found by Westra et al. (2014) with
AIC. In their work, even though the AIC favoured
more complex models, these models performed better
in the validation period. For the Saci River basin the
AIC and BIC led to different results. The BIC criterion
penalized the complexity more than the AIC and,
therefore, selected a model less complex (in terms of
the number of parameters) than the AIC criterion
(M11, with seven parameters, versus M13, with eight
parameters). Furthermore, we highlight the importance
of the correct choice of the error assumptions in order
to correctly identify the best models, since both AIC
and BIC were sensitive to the error model considered.

Models with the same number of parameters, such
as M04 and M09 (with five each), had very different

performance metrics and information criteria values.
Those results, together with the fact that the most
complex model (M12, with nine parameters) was not
considered the best, are evidence that the model struc-
ture is more important than the number of parameters.

Model structure and residual error parameters

The residual errors of hydrological models were best
represented by a model that explicitly accounts for
heteroscedasticity, since larger streamflow values are
often associated with larger error measurements, and
non-normality. In addition, a wrong representation of
the residuals resulted in a poorer predictive uncer-
tainty, as found in other studies (e.g. Kavetski et al.
2011).

The posterior distribution of the error model para-
meters for the different hydrological models shows that
a model structure that better represents the simulated
discharge results in a lower degree of heteroscedasti-
city, as evidenced by the lower values of the hetero-
scedasticity slope (σ1). The heteroscedasticity intercept
(σ0) represents the standard deviation of residuals for
low flows. In the Saci River basin there was a clear
difference in the simulation of low flows between serial
and parallel structures. In the Bugres River basin, σ0
values did not vary so much between parallel and serial
structures, and the simulation of low flows between
those structures was not so different as in the Saci.

Summary and conclusions

In this study we combined flexible hydrological model-
ling, uncertainty analysis and control of model com-
plexity to identify model structures that have a better
correspondence with catchment behaviour and hence
hypothesize about dominant runoff generation
mechanisms. We compared the performance of three
error models and nine conceptual hydrological models
from the SUPERFLEX framework. Model performance
was evaluated considering both information criteria,
which penalize for increasing model complexity, and
the quality of streamflow predictive uncertainty. As
a study case, the proposed methodology was applied
to the rainfall–runoff modelling of two forested basins
located in the southern region of Brazil.

The use of model structures that differed system-
atically from each other allowed verification of the
impact of different components on the results, such
as the inclusion of reservoirs and nonlinearity of
flows. The main difference in performance considering
both the quality of the predictive uncertainty (mea-
sured by the performance metrics) and the information
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criteria values resulted from the consideration of
a parallel connection between the fast and slow reser-
voirs. This result indicates that the model architecture
was more important than the increase in the number of
model parameters in the representation of the runoff
generation in these two basins.

With the increase in error model complexity, resi-
duals assumptions were better satisfied, and the quality
of the predictive uncertainty was improved. In addi-
tion, each error model led to different parameter pos-
terior distributions. Therefore, we highlight the
importance of the proper choice of the error model
since it affected the quality of the predictive uncer-
tainty, the inferred parameter values, and also the
model selection with information criteria. The poster-
ior distribution of the error model parameters for the
different hydrological models showed that a model
structure that better represents the simulated discharge
results in a lower degree of heteroscedasticity, as evi-
denced by the lower values of the heteroscedasticity
slope.

Considering the quality of the predictive uncer-
tainty, information criteria and model performance in
the validation period, the same models presented better
results, showing that the method utilized in this study
was consistent. The information criteria were inversely
related with the maximum log likelihood values from
the validation period, meaning that even though more
complex models were favoured by the selected infor-
mation criteria, this complexity was justified by the
data. Nevertheless, we believe that more robust results
would be found with the use of a model selection
method that considers the values of the likelihood
function over the entire parameter space, and not
only the maximum value of the likelihood function.
An example would be to use the evidence, i.e. the
denominator of the Bayes theorem, as suggested by
Volpi et al. (2017).

More robust conclusions could be made if addi-
tional observations were available, as done by some
recent studies. McMillan et al. (2012) utilized tracer
dynamics as a diagnostic tool to evaluate model struc-
tures. Kuppel et al. (2018) combined a physically-based
model with water isotopic tracer and age. Knighton
et al. (2017) utilized water isotope tracers to verify
the assumptions about the unsaturated zone. Despite
the use of a relatively short data series, especially as was
the case for the Saci River basin, the rigorous metho-
dology presented here allowed the acquisition of some
insights about the behaviour of the studied catchments.
This methodology can be very useful when types of
data other than precipitation and streamflow are not
available for model constraint.
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